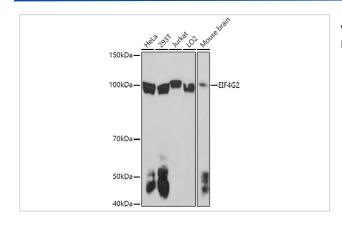
EIF4G2 antibody

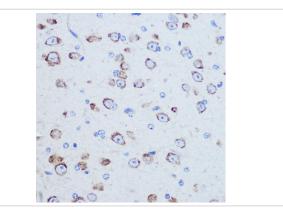
Catalog No: #38486

Package Size: #38486-1 50ul #38486-2 100ul

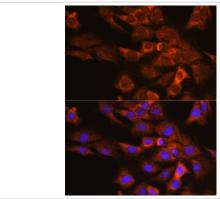
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

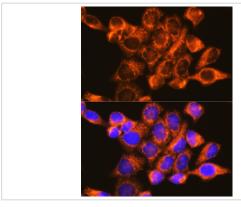

Description

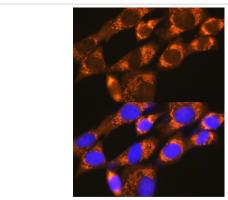
Product Name	EIF4G2 antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Mouse,Rat
Specificity	The antibody detects endogenous level of total EIF4G2 protein.
Immunogen Type	Peptide
Immunogen Description	A synthetic peptide of human EIF4G2 (NP_001409.3).
Target Name	EIF4G2
Other Names	EIF4G2;AAG1;DAP5;NAT1;P97
Accession No.	Uniprot:P78344GeneID:1982
SDS-PAGE MW	100KDa
Concentration	1.0mg/ml
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:500 - 1:1000IHC 1:100 - 1:200IF 1:50 - 1:200


Images


Western blot analysis of extracts of various cell lines, using EIF4G2 antibody.


Immunohistochemistry of paraffin-embedded mouse brain using EIF4G2 Rabbit pAb.

Immunofluorescence analysis of C6 cells using EIF4G2 Rabbit pAb.

Immunofluorescence analysis of HeLa cells using EIF4G2 Rabbit pAb.

Immunofluorescence analysis of NIH-3T3 cells using EIF4G2 Rabbit pAb.

Background

Translation initiation is mediated by specific recognition of the cap structure by eukaryotic translation initiation factor 4F (eIF4F), which is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. The protein encoded by this gene shares similarity with the C-terminal region of eIF4G that contains the binding sites for eIF4A and eIF3; eIF4G, in addition, contains a binding site for eIF4E at the N-terminus. Unlike eIF4G, which supports cap-dependent and independent translation, this gene product functions as a general repressor of translation by forming translationally inactive complexes. In vitro and in vivo studies indicate that translation of this mRNA initiates exclusively at a non-AUG (GUG) codon. Alternatively spliced transcript variants encoding different isoforms of this gene have been described.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account numeric of animals.