p53(Phospho-Ser15) Antibody

Catalog No: #11094

Package Size: #11094-1 50ul #11094-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	p53(Phospho-Ser15) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB;IHC;IP;IF;ELISA
Species Reactivity	Hu Rt Ms
Specificity	The antibody detects endogenous level of p53 only whenphosphorylated at serine15.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of serine 15 (P-L-S(p)-Q-E) derived from Human p53.
Target Name	p53
Modification	Phospho
Other Names	Tumor suppressor p53; Phosphoprotein p53; Antigen NY-CO-13; TP53;
Accession No.	Swiss-Prot: P04637NCBI Protein: NP_000537.3
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details

Predicted MW: 53kd

Western blotting: 1:500~1:1000
Immunohistochemistry: 1:50~1:100
Immunofluorescence: 1:100~1:200

Images

Western blot analysis of extracts from 293 cells untreated or treated with UV using p53(Phospho-Ser15) Antibody #11094.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using p53 (Phospho-Ser15) Antibody #11094 (left) or the same antibody preincubated with blocking peptide #51094 (right).

Immunofluorescence staining of methanol-fixed Hela cells using p53(Phospho-Ser15) Antibody #11094.

Immunofluorescence staining of methanol-fixed Hela cells using p53 (Phospho-Ser15) Antibody #11094.

Background

Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Implicated in Notch signaling cross-over.

Lin T, et al. (2005) Nat Cell Biol; 7(2): 165-71.

Vega FM, et al. (2004) Mol Cell Biol; 24(23): 10366-80.

Li J, et al. (2004) J Biol Chem; 279(40): 41275-9.

Wang J, et al. (2004) J Biol Chem; 279(38): 39584-92.

Published Papers

el at., Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I.In Antioxid Redox Signal on 2017 Jul 10 by Xiao-Jing Shi , Lina Ding, et al.. PMID: 27650197, , (2017)

PMID:27650197

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish as only and is not interface for account name of animals.