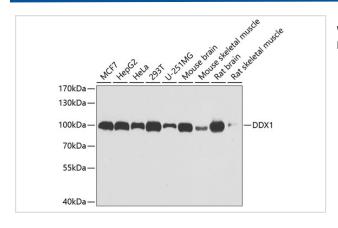
DDX1 antibody

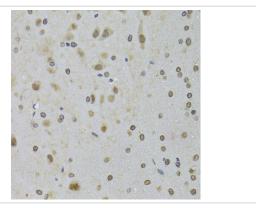
Catalog No: #39019

Package Size: #39019-1 50ul #39019-2 100ul

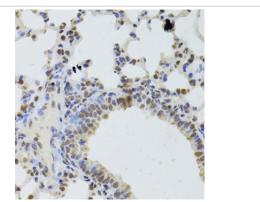
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

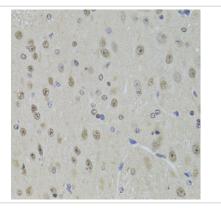

Description

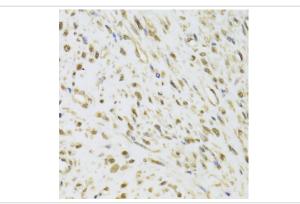
Product Name	DDX1 antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC
Species Reactivity	Human,Mouse,Rat
Specificity	The antibody detects endogenous level of total DDX1 protein.
Immunogen Type	Recombinant Protein
Immunogen Description	Recombinant fusion protein of human DDX1 (NP_004930.1).
Target Name	DDX1
Other Names	DDX1;DBP-RB;UKVH5d
Accession No.	Uniprot:Q92499GeneID:1653
SDS-PAGE MW	100kDa
Concentration	1.0mg/ml
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:200


Images


Western blot analysis of extracts of various cell lines, using DDX1 antibody.


Immunohistochemistry of paraffin-embedded rat brain using DDX1 Antibody.

Immunohistochemistry of paraffin-embedded mouse lung using DDX1 Antibody.

Immunohistochemistry of paraffin-embedded mouse brain using DDX1 Antibody.

Immunohistochemistry of paraffin-embedded human leiomyoma of uterus using DDX1 Antibody.

Background

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein of unknown function. It shows high transcription levels in 2 retinoblastoma cell lines and in tissues of neuroectodermal origin.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.