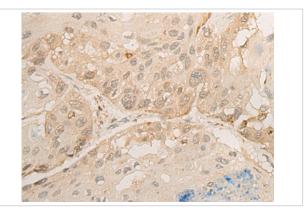
DROSHA Antibody

Catalog No: #47079

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


_				
	esc	rır	۱t17	nn.
		7 1 1 4	лι	7/1

Product Name	DROSHA Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antigen affinity purification
Applications	IHC
Species Reactivity	Hu
Specificity	The antibody detects endogenous levels of total DROSHA protein.
Immunogen Type	peptide
Immunogen Description	Synthetic peptide of human DROSHA
Target Name	DROSHA
Other Names	RN3; ETOHI2; RNASEN; RANSE3L; RNASE3L; HSA242976
Accession No.	Swiss-Prot#:Q9NRR4 NCBI Gene ID:29102Gene Accssion:NP_037367
Concentration	1.7mg/ml
Formulation	Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol.
Storage	Store at -20C

Application Details

Immunofluorescence:1: 20-100

Images

The image is immunohistochemistry of paraffin-embedded Human esophagus cancer tissue using 47079(DROSHA Antibody) at dilution 1/45. (Original magnification: ?00)

Background

This gene encodes a ribonuclease (RNase) III double-stranded RNA-specific ribonuclease and subunit of the microprocessor protein complex, which catalyzes the initial processing step of microRNA (miRNA) synthesis. The encoded protein cleaves the stem loop structure from the primary microRNA (pri-miRNA) in the nucleus, yielding the precursor miRNA (pre-miRNA), which is then exported to the cytoplasm for further processing. In a human cell line lacking a functional copy of this gene, canonical miRNA synthesis is reduced. Somatic mutations in this gene have been observed in human patients with kidney cancer.?

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				