p57 (Acetyl-Lys278) Polyclonal Antibody

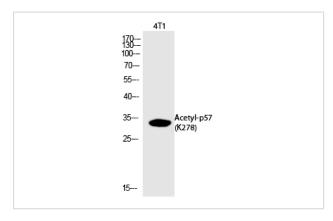
Catalog No: #HW130

Package Size: #HW130-1 50ul #HW130-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

$\overline{}$		4.5
	escri	ntion
\boldsymbol{L}	COUL	Puon

Product Name	p57 (Acetyl-Lys278) Polyclonal Antibody	
Host Species	Rabbit	
Clonality	Polyclonal	
Purification	The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific	
	immunogen.	
Applications	WB ELISA	
Species Reactivity	Hu Ms Rt	
Specificity	Acetyl-p57 (K278) Polyclonal Antibody detects endogenous levels of p57 protein only when acetylated at	
	K278.	
Immunogen Type	peptide	
Immunogen Description	Synthesized peptide derived from human p57 around the acetylation site of K278.	
Target Name	p57	
Modification	Acetyl	
Other Names	CDKN1C; KIP2; Cyclin-dependent kinase inhibitor 1C; Cyclin-dependent kinase inhibitor p57; p57Kip2	
Accession No.	Swiss-Prot: P49918NCBI Gene ID: 1028	
Target Species	human	
Target Species SDS-PAGE MW		
	human	
SDS-PAGE MW	human 33kd	
SDS-PAGE MW Concentration	human 33kd 1mg/ml	


Application Details

Western blotting: 1/500 - 1/2000

ELISA: 1/20000

Not yet tested in other applications

Images

Western Blot analysis of 4T1 cells using Acetyl-p57 (K278) Polyclonal Antibody

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			