RNF217 Antibody

Catalog No: #47643

Description

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

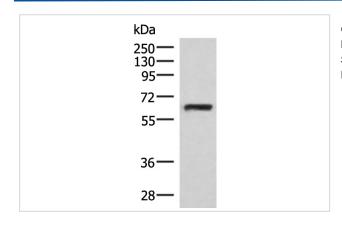
Decemption	
Product Name	RNF217 Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antigen affinity purification
Applications	WB
Species Reactivity	Hu, Ms
Specificity	The antibody detects endogenous levels of total RNF217 protein.
Immunogen Type	Peptide
Immunogen Description	Synthetic peptide of human RNF217
Target Name	RNF217
Other Names	OSTL; IBRDC1; C6orf172; dJ84N20.1

Swiss-Prot#:Q8TC41NCBI Gene ID:154214Gene Accssion:NP_001273327

Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol.

Application Details

Accession No.
Calculated MW


Concentration

Formulation

Storage

WB dilution:1:200-1000

Images

59 kDa

Store at -20°C

0.7

Gel: 8%SDS-PAGE, Lysate: 40 E'Og, Lane: HepG2 cell lysate, Primary antibody:47643(RNF217 Antibody) at dilution 1/250, Secondary antibody: Goat anti rabbit IgG at 1/8000 dilution, Exposure time: 1 minute

Background

This protein encoded by this gene is a member of the RING1-IBR-RING24 (RBR) ubiquitin protein ligase family, and it belongs to a subfamily of these proteins that contain a transmembrane domain. This protein can interact with the HAX1 anti-apoptotic protein via its C-terminal RING finger motif, which suggests a role in apoptosis signaling. It is thought that deregulation of this gene can be a mechanism in leukemogenesis. Mutations in the region encoding the protein GXXXG motif, which appears to be necessary for protein self-association, have been found in human cancers. Alternative splicing of this gene results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			