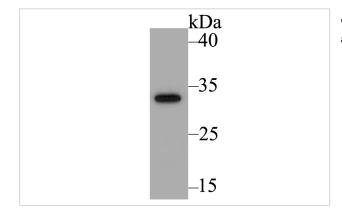
GFP11-tag Antibody

Catalog No: #48545

Package Size: #48545-1 50ul #48545-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


$\overline{}$			
1	escri	nti	nn
$\boldsymbol{\nu}$	COUL	ΙPU	UH

Product Name	GFP11-tag Antibody	
Purification	Peptide affinity purified.	
Applications	WB	
Immunogen Description	Synthetic peptide RDHMVLHEYVNAAGITC linked to KLH.	
Accession No.	Swiss-Prot#:	
Formulation	1*PBS (pH7.4), 0.2% BSA, 50% Glycerol. Preservative: 0.05% Sodium Azide.	
Storage	Store at +4°C after thawing. Aliquot store at -20°C. Avoid repeated freeze / thaw cycles.	

Application Details

WB: 1:1,000

Images

Western blot analysis of GFP11-tag on fusion protein using anti-GFP11-tag antibody at 1/1,000 dilution.

Background

Tagging proteins with a functional sequence is a powerful way to access function, and inserting tags at endogenous genomic loci allows the preservation of a near-native cellular background. GFP11 is the 11th beta-strand of the superfolder GFP beta-barrel structure. When expressed in the same cell, GFP11 and its complementary GFP fragment (GFP1-10) enable functional GFP tagging upon complementation. The key advantage of the GFP11 is its small size (16 aa): this allows commercial ssDNA oligomers to be used as HDR donors, circumventing any requirement for molecular cloning.

References

1. Leonetti MD et al. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc Natl Acad Sci USA 113(25):E3501-8 (2016).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				