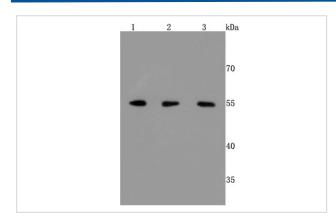
ERp57 Rabbit mAb

Catalog No: #49481

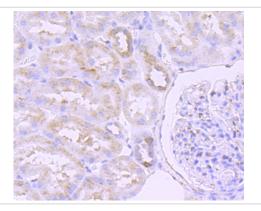
Package Size: #49481-1 50ul #49481-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

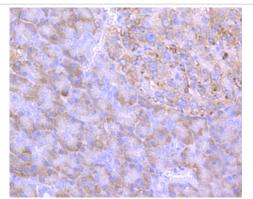

_			
Des	cri	ntı	On.
レロコ	UH	บแ	OH

Product Name	ERp57 Rabbit mAb
Host Species	Recombinant Rabbit
Clonality	Monoclonal antibody
Clone No.	JM11-44
Purification	ProA affinity purified
Applications	WB, IP, IHC
Species Reactivity	Hu
Immunogen Description	recombinant protein
Other Names	58 kDa glucose regulated protein antibody 58 kDa glucose-regulated protein antibody 58 kDa microsomal
	protein antibody Disulfide isomerase ER 60 antibody Disulfide isomerase ER-60 antibody Endoplasmic
	reticulum resident protein 57 antibody Endoplasmic reticulum resident protein 60 antibody ER p57 antibody
	ER protein 57 antibody ER protein 60 antibody ERp 57 antibody ERp57 antibody ERp60 antibody ERp61
	antibody Glucose Regulated Protein 58 Kd antibody GRP 57 antibody GRP 58 antibody GRP57 antibody
	HsT17083 antibody p58 antibody PDIA 3 antibody PDIA3 antibody PDIA3_HUMAN antibody Phospholipase C
	alpha antibody PI PLC antibody Protein disulfide isomerase A3 antibody Protein disulfide isomerase family A
	member 3 antibody Protein disulfide-isomerase A3 antibody
Accession No.	Swiss-Prot#:P30101
Calculated MW	55 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C

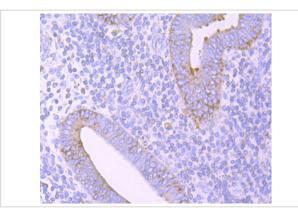
Application Details


WB: 1:500-1:1000IHC: 1:50-1:200 IP: 1:10-1:50

Images



Western blot analysis of ERp57 on different cells lysates using anti-ERp57 antibody at 1/500 dilution. Positive controlo $\Omega^1/2$ o $\Omega^1/2$


Line 1: Hela Line 2: HepG2 Line 3:293T

Immunohistochemical analysis of paraffin-embedded human kidney tissue using anti-ERp57 antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded human pancreas tissue using anti-ERp57 antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded human uterus tissue using anti-ERp57 antibody. Counter stained with hematoxylin.

Background

Mammals defend themselves against intracellular pathogens through presentation of cytoplasmically-derived short pathogenic peptides to the cell surface of cytotoxic T lymphocytes, which subsequently leads to cytotoxic events with respect to the affected cell. Antigen presentation is mediated by major histocompatibility complex (MHC) class I molecules, which bind and coordinate short pathogenic peptides. MHC class I molecules assemble in the endoplasmic reticulum with chaperones before binding to the transporter associated with antigen processing (TAP). ERp57, also designated GRP57, GRP58, ERp60 and ERp61, is a component of the MHC class I pathway that appears to interact with MHC class I molecules before they associate with TAP. The human ERp57 gene maps to chromosome 15q15 and encodes a 505 amino acid protein. ERp57 has two Trp-Cys-Gly-His-Cys-Lys motifs completely conserved among the mammals. ERp57 may act as a protease, a protein disulfide isomerase, a phospholipase or a combination of these.

References

1. He Y et al. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma. PLoS One 11:e0146530 (2016). 2. Kodavanti PR et al. Developmental exposure to a commercial PBDE mixture: effects on protein networks in the cerebellum and hippocampus of rats. Environ Health Perspect 123:428-36 (2015).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.