Product Datasheet

CASP1 Conjugated Antibody

Catalog No: #C32096

Package Size: #C32096-AF350 100ul #C32096-AF405 100ul #C32096-AF488 100ul #C32096-AF555 100ul #C32096-AF555 100ul #C32096-AF594 100ul #C32096-AF604 100ul #C32096-AF680 100ul #C32096-AF750 100ul #C32096-Biotin 100ul #C32096-Compared 50ul

Host Species Clonality Applications Species Reactivity Specificity	CASP1 Conjugated Antibody Rabbit
Clonality I Applications Species Reactivity I Specificity	Rabbit
Applications Species Reactivity Specificity	. cook
Species Reactivity I Specificity	Polyclonal
Specificity	WB, IF
	Hu Ms, Rt
	The antibody detects endogenous level of total CASP1 protein.
Immunogen Description	Recombinant protein of human CASP1.
Conjugates I	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750
Other Names	CASP1;ICE;IL1BC;P45;Caspase-1
Accession No.	Swiss-Prot#:P29466NCBI Gene ID:834
Calculated MW	45
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide
Storage	

Application Details

WB: 1:50-1:200 IF:1:50-1:200

Product Description

Antibodies were purified by affinity purification using immunogen.

Background

Caspase-1, or interleukin-1? converting enzyme (ICE/ICE α), is a class I cysteine protease, which also includes caspases -4, -5, -11, and -12. Caspase-1 cleaves inflammatory cytokines such as pro-IL-1? and interferon-γ inducing factor (IL-18) into their mature forms (1,2). Like other caspases, caspase-1 is proteolytically activated from a proenzyme to produce a tetramer of its two active subunits, p20 and p10. Caspase-1 has a large amino-terminal pro-domain that contains a caspase recruitment domain (CARD). Overexpression of caspase-1 can induce apoptosis (3). Mice deficient in caspase-1, however, have no overt defects in apoptosis but do have defects in the maturation of pro-IL-1 β and are resistant to endotoxic shock (4,5). At least six caspase-1 isoforms have been identified, including caspase-1 α , β , γ, δ, ε and ζ (6). Most caspase-1 isoforms (α , β , γ and δ) produce products between 30-48 kDa and induce apoptosis upon over-expression. Caspase-1 ε typically contains only the p10 subunit, does not induce apoptosis and may act as a dominant negative. The widely expressed ζ isoform of caspase-1 induces apoptosis and lacks 39 amino-terminal residues found in the α isoform (6). Activation of caspase-1 occurs through an oligomerization molecular platform designated the " inflammasome" that includes caspase-5, Pycard/Asc, and NALP1 (7).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		