Product Datasheet

YWHAB Conjugated Antibody

Catalog No: #C32123

Description

Package Size: #C32123-AF350 100ul #C32123-AF405 100ul #C32123-AF488 100ul #C32123-AF555 100ul #C32123-AF554 100ul #C32123-AF594 100ul #C32123-AF594 100ul #C32123-AF594 100ul #C32123-AF594 100ul #C32123-AF595 100ul #C32123-AF59

#C32123-AF647 100ul #C32123-AF680 100ul #C32123-AF750 100ul #C32123-Biotin 100ul #C32123-Conjugated 50ul

Description	
Product Name	YWHAB Conjugated Antibody
Host Species	Rabbit
Clonality	Polyclonal
Applications	WB, IF
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of total YWHAB protein.
Immunogen Description	Recombinant protein of human YWHAB.
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750

Accession No.	Swiss-Prot#:P31946NCBI Gene ID:7529	
Calculated MW	6	
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide	
Storage	Store at 4°C in dark for 6 months	

YWHAB;GW128;HS1;KCIP-1;14-3-3,

Application Details

WB: 1:50-1:200 IF:1:50-1:200

Other Names

Product Description

Antibodies were purified by affinity purification using immunogen.

Background

The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β , γ , ϵ , $\sigma\Omega'/2\sigma\Omega'/2$, ζ , $\sigma\Omega'/2\sigma\Omega'/2$, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ , respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation-independent interactions, has been observed (4). 14-3-3 binding masks specific sequences of the target protein and therefore modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			