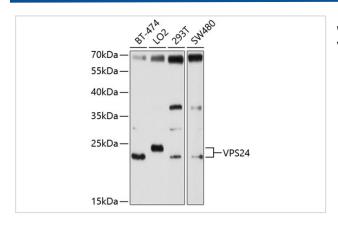
VPS24 Polyclonal Antibody

Catalog No: #27363

Package Size: #27363-1 50ul #27363-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	VPS24 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Hu,Ms
Immunogen Description	Recombinant fusion protein of human VPS24 (NP_057163.1).
Other Names	CHMP3; CGI-149; NEDF; VPS24; charged multivesicular body protein 3
Accession No.	Swiss-Prot#:Q9Y3E7NCBI Gene ID:51652
Calculated MW	23kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using VPS24 antibody.

Background

This gene encodes a protein that sorts transmembrane proteins into lysosomes/vacuoles via the multivesicular body (MVB) pathway. This protein, along with other soluble coiled-coil containing proteins, forms part of the ESCRT-III protein complex that binds to the endosomal membrane and recruits additional cofactors for protein sorting into the MVB. This protein may also co-immunoprecipitate with a member of the IFG-binding protein superfamily. Alternative splicing results in multiple transcript variants. Read-through transcription also exists between this gene and the upstream ring finger protein 103 (RNF103) gene.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		