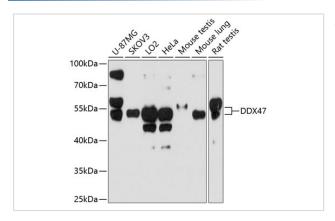
DDX47 Polyclonal Antibody

Catalog No: #27396

Package Size: #27396-1 50ul #27396-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	DDX47 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC
Species Reactivity	Hu,Ms,Rt
Immunogen Description	Recombinant fusion protein of human DDX47 (NP_057439.2).
Other Names	DDX47; E4-DBP; HQ0256; MSTP162; RRP3; DEAD-box helicase 47
Accession No.	Swiss-Prot#:Q9H0S4NCBI Gene ID:51202
Calculated MW	50kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:200

Images

Western blot analysis of extracts of various cell lines, using DDX47 antibody.

Background

This gene encodes a member of the DEAD box protein family. DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. The protein encoded by this gene can shuttle between the nucleus and the cytoplasm, and has an RNA-independent ATPase activity. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		