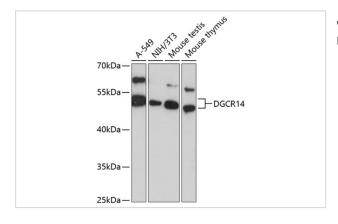
DGCR14 Polyclonal Antibody

Catalog No: #27928

Package Size: #27928-1 50ul #27928-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	DGCR14 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Hu,Ms
Immunogen Description	Recombinant fusion protein of human DGCR14 (NP_073210.1).
Other Names	DGCR14; DGCR13; DGS-H; DGS-I; DGSH; DGSI; ES2; ESS-2; Es2el; bis1; protein DGCR14
Accession No.	Swiss-Prot#:Q96DF8NCBI Gene ID:8220
Calculated MW	53kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using DGCR14 antibody.

Background

This gene is located within the minimal DGS critical region (MDGCR) thought to contain the gene(s) responsible for a group of developmental disorders. These disorders include DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome, and some familial or sporadic conotruncal cardiac defects which have been associated with microdeletion of 22q11.2. The encoded protein may be a component of C complex spliceosomes, and the orthologous protein in the mouse localizes to the nucleus. Alternatively spliced transcript variants have been found for this gene.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		