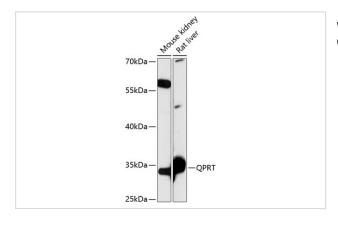
QPRT Polyclonal Antibody

Catalog No: #28521

Package Size: #28521-1 50ul #28521-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	QPRT Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Hu,Ms,Rt
Immunogen Description	Recombinant fusion protein of human QPRT (NP_055113.2).
Other Names	QPRT; HEL-S-90n; QPRTase; quinolinate phosphoribosyltransferase
Accession No.	Swiss-Prot#:Q15274NCBI Gene ID:23475
Calculated MW	31kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using QPRT antibody.

Background

This gene encodes a key enzyme in catabolism of quinolinate, an intermediate in the tryptophan-nicotinamide adenine dinucleotide pathway.

Quinolinate acts as a most potent endogenous exitotoxin to neurons. Elevation of quinolinate levels in the brain has been linked to the pathogenesis of neurodegenerative disorders such as epilepsy, Alzheimer's disease, and Huntington's disease. Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		