DYNC1I2 Polyclonal Antibody

Catalog No: #28685

Package Size: #28685-1 50ul #28685-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	DYNC1I2 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Hu,Ms,Rt
Immunogen Description	Recombinant fusion protein of human DYNC1I2 (NP_001258717.1).
Other Names	DYNC1I2; DIC74; DNCI2; IC2; cytoplasmic dynein 1 intermediate chain 2
Accession No.	Swiss-Prot#:Q13409NCBI Gene ID:1781
Calculated MW	71-105kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using DYNC1I2 antibody.

Background

This gene encodes a member of the dynein intermediate chain family. The encoded protein is a non-catalytic component of the cytoplasmic dynein 1 complex, which acts as a retrograde microtubule motor to transport organelles and vesicles. A pseudogene of this gene is located on chromosome 10. Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		