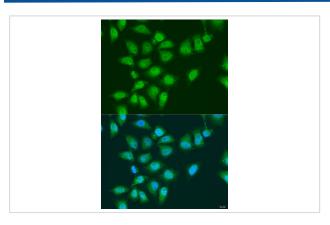
EYA3 Polyclonal Antibody

Catalog No: #28813

Package Size: #28813-1 50ul #28813-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	EYA3 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Hu,Rt
Immunogen Description	Recombinant fusion protein of human EYA3 (NP_001981.2).
Other Names	EYA3; eyes absent homolog 3
Accession No.	Swiss-Prot#:Q99504NCBI Gene ID:2140
Calculated MW	Refer to figures
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB□1:500 - 1:2000IF□1:50 - 1:200

Images

Immunofluorescence analysis of U2OS cells using EYA3 antibody.

Background

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may act as a transcriptional activator and have a role during development. It can act as a mediator of chemoresistance and cell survival in Ewing sarcoma cells, where this gene is up-regulated via a micro-RNA that binds to the 3' UTR of the transcript. A similar protein in mice acts as a transcriptional activator. Alternative splicing of this gene results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		