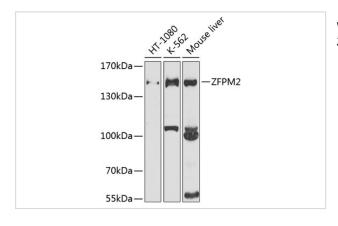
ZFPM2 Polyclonal Antibody

Catalog No: #31757

Package Size: #31757-1 50ul #31757-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	ZFPM2 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Hu,Ms
Immunogen Description	Recombinant fusion protein of human ZFPM2 (NP_036214.2).
Other Names	ZFPM2; DIH3; FOG2; SRXY9; ZC2HC11B; ZNF89B; hFOG-2; zinc finger protein ZFPM2
Accession No.	Swiss-Prot#:Q8WW38NCBI Gene ID:23414
Calculated MW	150kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using ZFPM2 antibody.

Background

The zinc finger protein encoded by this gene is a widely expressed member of the FOG family of transcription factors. The family members modulate the activity of GATA family proteins, which are important regulators of hematopoiesis and cardiogenesis in mammals. It has been demonstrated that the protein can both activate and down-regulate expression of GATA-target genes, suggesting different modulation in different promoter contexts. A related mRNA suggests an alternatively spliced product but this information is not yet fully supported by the sequence.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		