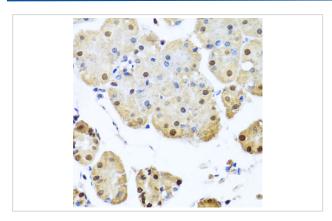
NUMA1 Rabbit Polyclonal Antibody

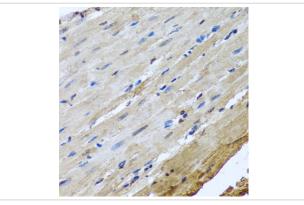
Catalog No: #53048

Package Size: #53048-1 50ul #53048-2 100ul

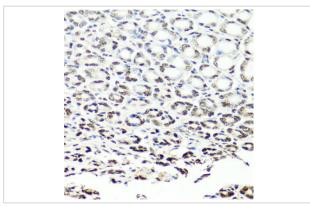
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

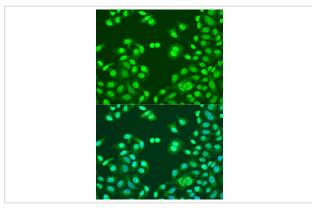

Description

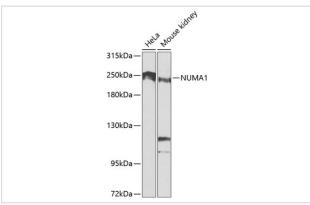
Product Name	NUMA1 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human NUMA1 (NP_006176.2).
Other Names	NUMA1;NMP-22;NUMA
Accession No.	Swiss Prot:Q14980GeneID:4926
Calculated MW	109kDa/200kDa/201kDa/236kDa/238kDa
SDS-PAGE MW	238kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:200 - 1:1000IHC 1:50 - 1:100IF 1:50 - 1:100


Images


Immunohistochemistry of paraffin-embedded human stomach using NUMA1 $\,$ at dilution of 1:100 (40x lens).


Immunohistochemistry of paraffin-embedded rat heart using NUMA1 at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded mouse stomach using NUMA1 at dilution of 1:100 (40x lens).

Immunofluorescence analysis of U2OS cells using NUMA1 at dilution of 1:100. Blue: DAPI for nuclear staining.

Western blot analysis of extracts of various cell lines, using NUMA1 at 1:1000 dilution.

Background

This gene encodes a large protein that forms a structural component of the nuclear matrix. The encoded protein interacts with microtubules and plays a role in the formation and organization of the mitotic spindle during cell division. Chromosomal translocation of this gene with the RARA (retinoic acid receptor, alpha) gene on chromosome 17 have been detected in patients with acute promyelocytic leukemia. Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.