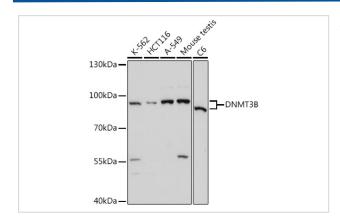
DNMT3B Rabbit Polyclonal Antibody

Catalog No: #53208

Package Size: #53208-1 50ul #53208-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


_				
	esci	'n	tıc	۱n
\boldsymbol{L}	しつい	ıv	แบ	, ,

Product Name	DNMT3B Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human DNMT3B (NP_008823.1).
Other Names	DNMT3B;ICF;ICF1;M.HsaIIIB
Accession No.	Swiss Prot:Q9UBC3GeneID:1789
Calculated MW	77-95kDa
SDS-PAGE MW	95kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:2000 - 1:5000IHC 1:50 - 1:200

Images

Western blot analysis of extracts of various cell lines, using DNMT3B at 1:1000 dilution.

Background

CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. This gene encodes a DNA methylations which is thought to function in de novo methylation, rather than maintenance methylation. The protein localizes primarily to the nucleus and its expression is developmentally regulated. Mutations in this gene cause the immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. Eight alternatively spliced transcript variants have been described. The full length sequences of variants 4 and 5 have not been determined.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				