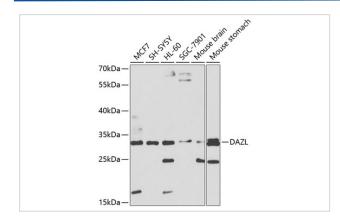
DAZL Rabbit Polyclonal Antibody

Catalog No: #53214

Package Size: #53214-1 50ul #53214-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	DAZL Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human, Mouse
Immunogen Description	Recombinant fusion protein of human DAZL (NP_001342.2).
Other Names	DAZL;DAZH;DAZL1;DAZLA;SPGYLA
Accession No.	Uniprot:Q92904GeneID:1618
Calculated MW	33kDa/35kDa
SDS-PAGE MW	33kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using DAZL antibody.

Background

The DAZ (Deleted in AZoospermia) gene family encodes potential RNA binding proteins that are expressed in prenatal and postnatal germ cells of males and females. The protein encoded by this gene is localized to the nucleus and cytoplasm of fetal germ cells and to the cytoplasm of developing occytes. In the testis, this protein is localized to the nucleus of spermatogonia but relocates to the cytoplasm during meiosis where it persists in spermatids and spermatozoa. Transposition and amplification of this autosomal gene during primate evolution gave rise to the DAZ gene cluster on the Y chromosome. Mutations in this gene have been linked to severe spermatogenic failure and infertility in males. Two transcript variants encoding different isoforms have been found for this gene.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		