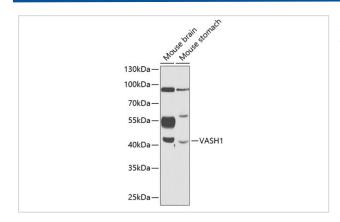
VASH1 Rabbit Polyclonal Antibody

Catalog No: #53387

Package Size: #53387-1 50ul #53387-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


_			
	Accri	nti	<u>on</u>
ט	escri	บแ	UH

Product Name	VASH1 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Mouse
Immunogen Description	Recombinant fusion protein of human VASH1 (NP_055724.1).
Other Names	VASH1;KIAA1036
Accession No.	Uniprot:Q7L8A9GeneID:22846
Calculated MW	21kDa/40kDa
SDS-PAGE MW	41kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using VASH1 antibody.

Background

Tyrosine carboxypeptidase that removes the C-terminal tyrosine residue of alpha-tubulin, thereby regulating microtubule dynamics and function. Critical for spindle function and accurate chromosome segregation during mitosis since microtuble detyronisation regulates mitotic spindle length and postioning. Acts as an angiogenesis inhibitor: inhibits migration, proliferation and network formation by endothelial cells as well as angiogenesis. This inhibitory effect is selective to endothelial cells as it does not affect the migration of smooth muscle cells or fibroblasts.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				