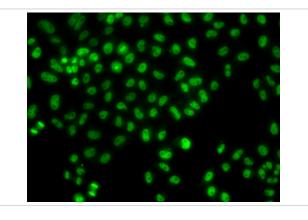
LHX8 Rabbit Polyclonal Antibody

Catalog No: #53607

Package Size: #53607-1 50ul #53607-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	LHX8 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human
Immunogen Description	Recombinant fusion protein of human LHX8 (NP_001001933.1).
Other Names	LHX8;LHX7
Accession No.	Swiss Prot:Q68G74GeneID:431707
Calculated MW	38kDa/39kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000IF 1:50 - 1:200

Images

Immunofluorescence analysis of HeLa cells using LHX8 .

Background

The protein encoded by this gene is a member of the LIM homeobox family of proteins, which are involved in patterning and differentiation of various tissue types. These proteins contain two tandemly repeated cysteine-rich double-zinc finger motifs known as LIM domains, in addition to a DNA-binding homeodomain. This family member is a transcription factor that plays a role in tooth morphogenesis. It is also involved in oogenesis and in neuronal differentiation. This gene is a candidate gene for cleft palate, and it is also associated with odontoma formation. Alternative splicing of this gene results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		