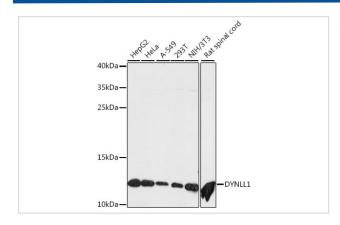
DYNLL1 Rabbit Polyclonal Antibody

Catalog No: #53862

Package Size: #53862-1 50ul #53862-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


_				
	esci	'n	tıc	۱n
\boldsymbol{L}	しつい	ıv	แบ	, ,

Product Name	DYNLL1 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	A synthetic peptide of human DYNLL1 (NP_003737.1).
Other Names	DYNLL1;DLC1;DLC8;DNCL1;DNCLC1;LC8;LC8a;PIN;hdlc1
Accession No.	Swiss Prot:P63167GeneID:8655
Calculated MW	10kDa
SDS-PAGE MW	12kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:100IF 1:50 - 1:100

Images

Western blot analysis of extracts of various cell lines, using DYNLL1 at 1:500 dilution.

Background

Cytoplasmic dyneins are large enzyme complexes with a molecular mass of about 1,200 kD. They contain two force-producing heads formed primarily from dynein heavy chains, and stalks linking the heads to a basal domain, which contains a varying number of accessory intermediate chains. The complex is involved in intracellular transport and motility. The protein described in this record is a light chain and exists as part of this complex but also physically interacts with and inhibits the activity of neuronal nitric oxide synthase. Binding of this protein destabilizes the neuronal nitric oxide synthase dimer, a conformation necessary for activity, and it may regulate numerous biologic processes through its effects on nitric oxide synthase activity. Alternate transcriptional splice variants have been characterized.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				