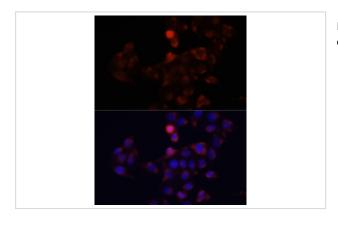
DCX Rabbit Polyclonal Antibody

Catalog No: #53883

Package Size: #53883-1 50ul #53883-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	DCX Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human,Mouse
Immunogen Description	Recombinant fusion protein of human DCX (NP_835364.1).
Other Names	DBCN;DC;LISX;SCLH;XLIS;DCX
Accession No.	Swiss Prot:O43602GeneID:1641
Calculated MW	40kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000IF 1:50 - 1:200

Images

Immunofluorescence analysis of HeLa cells using DCX at dilution of 1:100. Blue: DAPI for nuclear staining.

Background

This gene encodes a member of the doublecortin family. The protein encoded by this gene is a cytoplasmic protein and contains two doublecortin domains, which bind microtubules. In the developing cortex, cortical neurons must migrate over long distances to reach the site of their final differentiation. The encoded protein appears to direct neuronal migration by regulating the organization and stability of microtubules. In addition, the encoded protein interacts with LIS1, the regulatory gamma subunit of platelet activating factor acetylhydrolase, and this interaction is important to proper microtubule function in the developing cortex. Mutations in this gene cause abnormal migration of neurons during development and disrupt the layering of the cortex, leading to epilepsy, mental retardation, subcortical band heterotopia ('double cortex' syndrome) in females and lissencephaly ('smooth brain' syndrome) in males. Multiple transcript variants encoding different isoforms have been found for this gene.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		