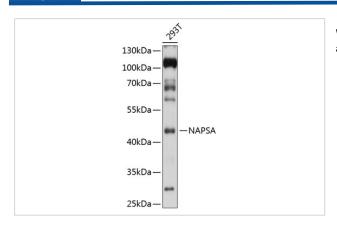
NAPSA Rabbit Polyclonal Antibody

Catalog No: #54921

Package Size: #54921-1 50ul #54921-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


_				
	es	\sim rı	nti	\cap r
-	-	OH	่บแ	OI.

Product Name	NAPSA Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human NAPSA (NP_004842.1).
Other Names	NAPSA;KAP;Kdap;NAP1;NAPA;SNAPA;napsin-A;Napsin A
Accession No.	Swiss Prot:O96009GeneID:9476
Calculated MW	45kDa
SDS-PAGE MW	45kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000IF 1:50 - 1:200

Images

Western blot analysis of extracts of 293T cells, using NAPSA at 1:1000 dilution.

Background

This gene encodes a member of the peptidase A1 family of aspartic proteases. The encoded preproprotein is proteolytically processed to generate an activation peptide and the mature protease. The activation peptides of aspartic proteinases function as inhibitors of the protease active site. These peptide segments, or pro-parts, are deemed important for correct folding, targeting, and control of the activation of aspartic proteinase zymogens. The encoded protease may play a role in the proteolytic processing of pulmonary surfactant protein B in the lung and may function in protein catabolism in the renal proximal tubules. This gene has been described as a marker for lung adenocarcinoma and renal cell carcinoma.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				