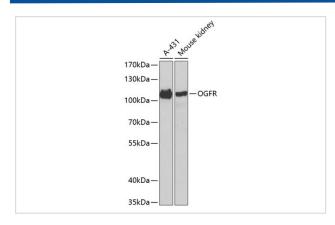
OGFR Rabbit Polyclonal Antibody

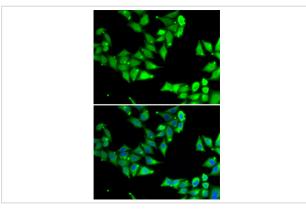
Catalog No: #55108

Package Size: #55108-1 50ul #55108-2 100ul

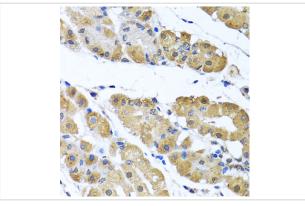
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

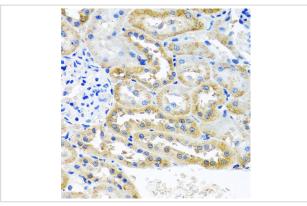

Description

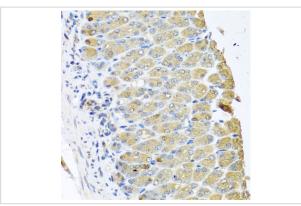
Product Name	OGFR Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human OGFR (NP_031372.2).
Other Names	OGFR
Accession No.	Swiss Prot:Q9NZT2GeneID:11054
Calculated MW	71kDa/73kDa
SDS-PAGE MW	110kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:200IF 1:50 - 1:100


Images


Western blot analysis of extracts of various cell lines, using OGFR at 1:1000 dilution.


Immunofluorescence analysis of MCF7 cells using OGFR . Blue: DAPI for nuclear staining.

Immunohistochemistry of paraffin-embedded human stomach using OGFR at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded rat kidney using OGFR at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded mouse stomach using OGFR at dilution of 1:100 (40x lens).

Background

The protein encoded by this gene is a receptor for opioid growth factor (OGF), also known as [Met(5)]-enkephalin. OGF is a negative regulator of cell proliferation and tissue organization in a variety of processes. The encoded unbound receptor for OGF has been localized to the outer nuclear envelope, where it binds OGF and is translocated into the nucleus. The coding sequence of this gene contains a polymorphic region of 60 nt tandem imperfect repeat units. Several transcripts containing between zero and eight repeat units have been reported.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.