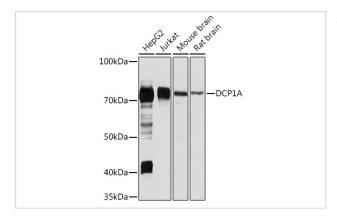
DCP1A Rabbit Polyclonal Antibody

Catalog No: #55196

Package Size: #55196-1 50ul #55196-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	DCP1A Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human DCP1A (NP_060873.4).
Other Names	DCP1A;HSA275986;Nbla00360;SMAD4IP1;SMIF
Accession No.	Uniprot:Q9NPI6GeneID:55802
Calculated MW	59kDa/63kDa
SDS-PAGE MW	70KDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using DCP1A Rabbit pAb.

Background

Decapping is a key step in general and regulated mRNA decay. The protein encoded by this gene is a decapping enzyme. This protein and another decapping enzyme form a decapping complex, which interacts with the nonsense-mediated decay factor hUpf1 and may be recruited to mRNAs containing premature termination codons. This protein also participates in the TGF-beta signaling pathway. Alternative splicing of this gene results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		