Product Datasheet

CD44 Conjugated Antibody

Catalog No: #C54292

Package Size: #C54292 50ul #C54292-AF350 100ul #C54292-AF405 100ul #C54292-AF488 100ul #C54292-AF5555 100ul #C54292-AF650 100ul #C54292-AF750 100ul #C54292-Biotin 100ul #C54292-

Description			
Product Name	CD44 Conjugated Antibody		
Host Species	Rabbit		
Clonality	Polyclonal		
Isotype	IgG		
Purification	Affinity purification		
Species Reactivity	Human,Mouse,Rat		
Immunogen Description	Recombinant fusion protein of human CD44 (NP_000601.3).		
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750		
Other Names	CDW44;CSPG8;ECMR-III;HCELL;HUTCH-I;IN;LHR;MC56;MDU2;MDU3;MIC4;Pgp1;CD44;CD44		
Accession No.	Swiss Prot:P16070GeneID:960		
Calculated MW	81kDa		
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.		
Storage	Store at -20°C. Avoid freeze / thaw cycles.		

Application Details

Suggested Dilution:	
AF350 conjugated: most applications: 1: 50 - 1: 250	0
AF405 conjugated: most applications: 1: 50 - 1: 250	0
AF488 conjugated: most applications: 1: 50 - 1: 250	0
AF555 conjugated: most applications: 1: 50 - 1: 250	0
AF594 conjugated: most applications: 1: 50 - 1: 250	0
AF647 conjugated: most applications: 1: 50 - 1: 250	0
AF680 conjugated: most applications: 1: 50 - 1: 250	0
AF750 conjugated: most applications: 1: 50 - 1: 250	0
Biotin conjugated: working with enzyme-conjugated	d streptavidin, most applications: 1: 50 - 1: 1,000

Background

The protein encoded by this gene is a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion and migration. It is a receptor for hyaluronic acid (HA) and can also interact with other ligands, such as osteopontin, collagens, and matrix metalloproteinases (MMPs). This protein participates in a wide variety of cellular functions including lymphocyte activation, recirculation and homing, hematopoiesis, and tumor metastasis. Transcripts for this gene undergo complex alternative splicing that results in many functionally distinct isoforms, however, the full length nature of some of these variants has not been determined. Alternative splicing is the basis for the structural and functional diversity of this protein, and may be related to tumor metastasis.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				