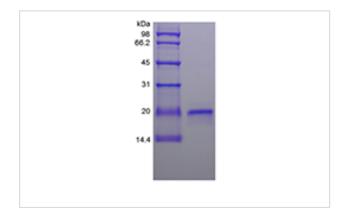
Recombinant Ovine Interferon-tau

Catalog No: #AP60268

Package Size: #AP60268-1 10ug #AP60268-2 100ug #AP60268-3 500ug



Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

$\overline{}$		4.5
	escri	ntion
-	COUL	puon

Product Name	Recombinant Ovine Interferon-tau	
Host Species	Yeast	
Purification	> 97 % by SDS-PAGE and HPLC analyses.	
Calculated MW	Approximately 19.9 kDa, a single glycosylated polypeptide chain containing 172 amino acids.	
Target Sequence	CYLSRKLMLD ARENLKLLDR MNRLSPHSCL QDRKDFGLPQ EMVEGDQLQK DQAFPVLYEM	
	LQQSFNLFYT EHSSAAWDTT LLEQLCTGLQ QQLDHLDTCR GQVMGEEDSE LGNMDPIVTV KKYFQGIYDY	
	LQEKGYSDCA WEIVRVEMMR ALTVSTTLQK RLTKMGGDLN SP	
Formulation	Lyophilized from a 0.2 μm filtered concentrated solution in PBS, pH 7.4.	
Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles.	
	- A minimum of 12 months from date of receipt, when stored at ≤-20 °C as supplied.	
	- 1 month, 2 to 8 °C under sterile conditions after reconstitution.	
	- 3 months, -20 to -70 °C under sterile conditions after reconstitution.	

Images

Background

IFN- θ Ω is a new class of type I IFN that is secreted by the trophoblast and is the signal for maternal recognition of pregnancy in sheep. IFN- θ Ω has potent immunosuppressive and antiviral activities similar to other type I IFN but is less cytotoxic than IFN- α/ϵ° Y. The current investigation concerns the effect of recombinant ovine IFN-tau (rOvIFN- θ Ω) on the modulation of MHC class I and II expression on cloned mouse cerebrovascular endothelial (CVE) cells. IFN-tau induced tyrosine phosphorylation of Stat1 and up regulated the expression of MHC class I on CVE. One proposed action by which type I IFN reduce the relapse rate in MS is via interference with IFN- η 1¬-induced MHC class II expression. IFN- θ Ω was shown to down regulate IFN- η 1¬-induced MHC class II expression on CVE and, hence, may be of potential therapeutic value in down regulating inflammation in the central nervous system (CNS). IFN- θ Ω did not upregulate the expression of MHC class II on CVE. IFN- θ Ω also inhibited the replication of Theiler's virus in CVE.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			