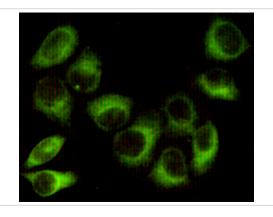
AMPK beta 1 Monoclonal Antibody

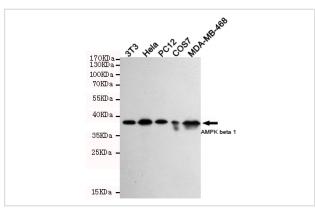
Catalog No: #27201

Package Size: #27201-1 50ul #27201-2 100ul

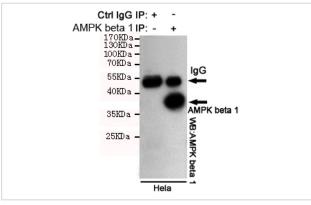
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

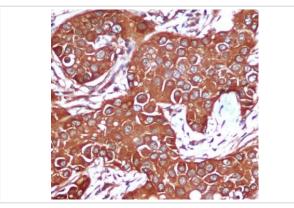

Description

Product Name	AMPK beta 1 Monoclonal Antibody
Host Species	Mouse
Clonality	Monoclonal
Clone No.	1A7-E11-E9
Isotype	Hu Ms Rt Mk
Purification	Affinity purified
Applications	WB ICC IP IHC
Species Reactivity	Hu Ms Rt Mk
Specificity	This antibody detects endogenous levels of AMPK beta 1 and does not cross-react with related proteins.
Immunogen Type	Recombinant Protein
Immunogen Description	Purified recombinant human AMPK beta 1 protein fragments expressed in E.coli.
Target Name	AMPK beta 1
Other Names	1300015D22Rik; 5 AMP activated protein kinase subunit beta 1; 5"-AMP-activated protein kinase subunit
	beta-1; AAKB1_HUMAN; AMP-ACTIVATED PROTEIN KINASE, NONCATALYTIC, BETA-1; AMP-activated,
	noncatalytic, beta-1; AMPK; AMPK beta 1 chain;
Accession No.	Uniprot: Q9Y478 Gene ID: 5564
SDS-PAGE MW	38kd
Formulation	Purified mouse monoclonal antibody in PBS(pH 7.4) containing with 0.02% sodium azide and 50% glycerol.
Storage	store at -20Λ C
	, , , , ,


Application Details

Western blotting: 1:1000
Immunocytochemistry: 1:100


Images


Immunocytochemistry staining of HeLa cells fixed with 1% Paraformaldehyde and using anti-AMPK beta 1 antibody (dilution 1:100).

Western blot detection of AMPK beta 1 in 3T3,Hela,PC-12,COS7 and MDA-MB-468 cell lysates using AMPK beta 1 antibody (1:1000 diluted).Predicted band size:38KDa.Observed band size:38KDa.Exposure time:5min.

Immunoprecipitation analysis of Hela cell lysates using AMPK beta 1 antibody.

Immunohistochemical analysis of paraffin-embedded Breast cancer using AMPK beta 1 Mouse mAb (1/200 dilution). Antigen retrieval was performed by pressure cooking in citrate buffer (pH 6.0).

Background

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Published Papers

el at., Blocking AMPK β1 myristoylation enhances AMPK activity and protects mice from high-fat diet-induced obesity and hepatic steatosis. In Cell Rep on 2022 Dec 20 by Katyayanee Neopane, Natalie Kozlov, et al..PMID:36543129, , (2022)

PMID:36543129

el at., AMPKβ isoform expression patterns in various adipocyte models and in relation to body mass index.In Front Physiol on 2022 Aug 4 by Franziska Kopietz, Eva Degerman,et al..PMID:35991175, , (2022)

PMID:35991175

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account numeric of animals.