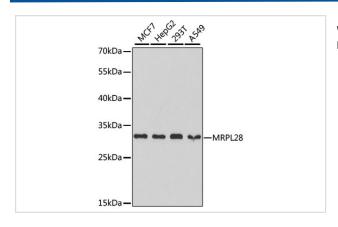
MRPL28 Antibody

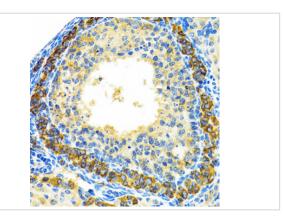
Catalog No: #33103

Package Size: #33103-1 50ul #33103-2 100ul

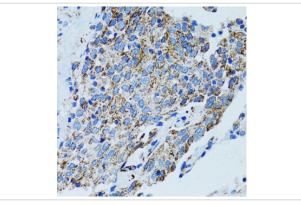
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

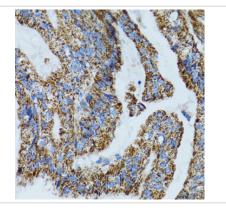

Description

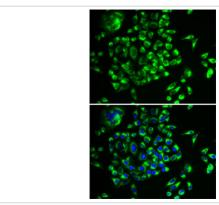
Product Name	MRPL28 Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Rat
Specificity	The antibody detects endogenous level of total MRPL28 protein.
Immunogen Type	Recombinant Protein
Immunogen Description	Recombinant fusion protein of human MRPL28 (NP_006419.2).
Target Name	MRPL28
Other Names	MRPL28;MAAT1;p15
Accession No.	Uniprot:Q13084GeneID:10573
SDS-PAGE MW	30kDa
Concentration	1.0mg/ml
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:200IF 1:50 - 1:100


Images


Western blot analysis of extracts of various cell lines, using MRPL28 antibody.


Immunohistochemistry of paraffin-embedded rat ovary using MRPL28 antibody.

Immunohistochemistry of paraffin-embedded human lung cancer using MRPL28 antibody.

Immunohistochemistry of paraffin-embedded human gastric cancer using MRPL28 antibody.

Immunofluorescence analysis of U2OS cells using MRPL28 antibody.

Background

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein, a part of which was originally isolated by its ability to recognize tyrosinase in an HLA-A24-restricted fashion.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.