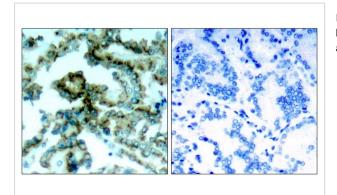
PKCb(Phospho-Thr641) Antibody

Catalog No: #11172

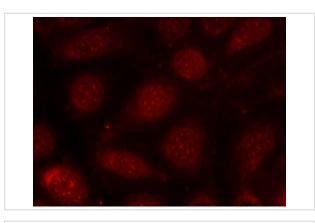
Package Size: #11172-1 50ul #11172-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

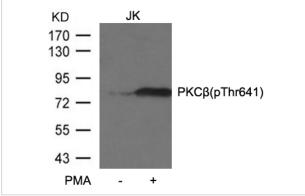
Description


Product Name	PKCb(Phospho-Thr641) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB IHC IF
Species Reactivity	Human;Mouse;Rat
Specificity	The antibody detects endogenous levels of PKCb only when phosphorylated at threonine 641.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of threonine 641 (E-L-T(p)-P-T) derived from Human PKCb
Conjugates	Unconjugated
Target Name	PKCb
Modification	Phospho
Other Names	PKCB; PRKCB1; PRKCB2
Accession No.	Swiss-Prot: P05771NCBI Protein: NP_002729.2
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details


Predicted MW: 82kd

Western blotting: 1:500~1:1000
Immunohistochemistry: 1:50~1:100
Immunofluorescence: 1:100~1:200


Images

Immunohistochemical analysis of paraffin-embedded human lung carcinoma tissue, using PKCb(phospho-Thr641) antibody(#11172).

Immunofluorescence staining of methanol-fixed MCF7 cells using PKCb(phospho-Thr641) antibody(#11172, Red).

Western blot analysis of extracts from JK cells untreated or treated with PMA using PKCβ (phospho-Thr641) antibody #11172.

Background

Calcium-activated and phospholipid-dependent serine/threonine-protein kinase involved in various processes such as regulation of the B-cell receptor (BCR) signalosome, apoptosis and transcription regulation. Plays a key role in B-cell activation and function by regulating BCR-induced NF-kappa-B activation and B-cell suvival. Required for recruitment and activation of the IKK kinase to lipid rafts and mediates phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652', leading to activate the NF-kappa-B signaling. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. Also involved in triglyceride homeostasis. Serves as the receptor for phorbol esters, a class of tumor promoters.

Zhang Y, et al. (2006) Mol Cell Biol; 26: 6748-6761 Castoria G, et al. (2004) Mol Cell Biol; 24: 7643-7653 Marcil J, et al. (1999) Biochem J; 337:185-192 Bornancin F, et al. (1996) Curr Biol; 6:1114-1123.

Published Papers

Jack N. Losso, Robert E. Truax, Gerald Richard el at., trans-Resveratrol Inhibits Hyperglycemia-Induced Inflammation and Connexin Downregulation in Retinal Pigment Epithelial Cells., Journal of Agricultural and Food Chemistry, 58 (14), 8246n— C8252(2010)

PMID:20578705

el at., High glucose stimulates mineralocorticoid receptor transcriptional activity through the protein kinase C ϵ° Y signaling.In Int Heart J on 2017 Oct 21 by Takeshi Hayashi, Hirotaka Shibata,et al..PMID: 28966330, , (2017)

PMID:28966330

el at., Investigation of the anti-tumor mechanism of tirabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, by phosphoproteomics and transcriptomics InPLoS OneOn2023 Mar 10byRyohei Kozaki , Tomoko Yasuhiro et al..PMID:36897912, , (2023)

PMID:36897912

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.