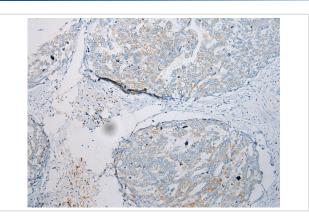
Product Datasheet

CCL7 Antibody

Catalog No: #43233

Package Size: #43233-1 50ul #43233-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	CCL7 Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antigen affinity purification.
Applications	IHC
Species Reactivity	Hu
Specificity	The antibody detects endogenous levels of total CCL7 protein.
Immunogen Type	peptide
Immunogen Description	Synthetic peptide of human CCL7
Target Name	CCL7
Other Names	FIC; MARC; MCP3; NC28; MCP-3; SCYA6; SCYA7
Accession No.	Swiss-Prot#: P80098Gene ID: 6354
Concentration	0.8mg/ml
Formulation	Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol.
Storage	Store at -20°C

Application Details

Immunohistochemistry: 1:100-1:200

Images

Immunohistochemical analysis of paraffin-embedded Human Liver cancer tissue using #43233 at dilution 1/200.

Background

This gene encodes monocyte chemotactic protein 3, a secreted chemokine which attracts macrophages during inflammation and metastasis. It is a member of the C-C subfamily of chemokines which are characterized by having two adjacent cysteine residues. The protein is an in vivo substrate of matrix metalloproteinase 2, an enzyme which degrades components of the extracellular matrix. This gene is part of a cluster of C-C chemokine family members on chromosome 17q.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		