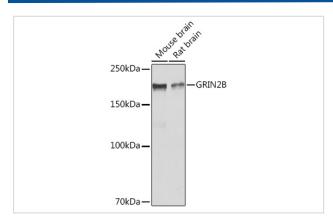
GRIN2B Rabbit Polyclonal Antibody

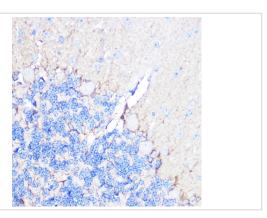
Catalog No: #54739

Package Size: #54739-1 50ul #54739-2 100ul

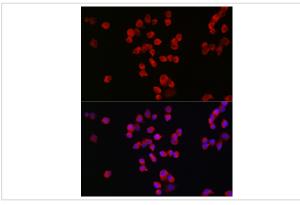
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

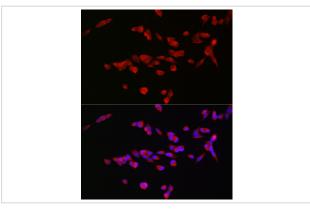

Description

Product Name	GRIN2B Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human;Mouse;Rat
Immunogen Description	A synthetic peptide of human GRIN2B (NP_000825.2).
Conjugates	Unconjugated
Other Names	GRIN2B;EIEE27;GluN2B;MRD6;NMDAR2B;NR2B;hNR3
Accession No.	Uniprot:Q13224GeneID:2904
Calculated MW	166kDa
SDS-PAGE MW	190KDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB□1:500 - 1:2000IHC□1:50 - 1:200IF□1:50 - 1:200


Images


Western blot analysis of extracts of various cell lines, using GRIN2B Rabbit pAb.

Immunohistochemistry of paraffin-embedded mouse brain using GRIN2B Rabbit pAb.

Immunofluorescence analysis of Neuro-2a cells using GRIN2B Rabbit pAb.

Immunofluorescence analysis of SH-SY5Y cells using GRIN2B Rabbit pAb.

Background

N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.

Published Papers

Khan Hammad; Dutta Sayan; Scott Alicia; Xiao Shulan; Yadav Saumitra; Chen Xiaoling; Aryal Uma; Kinzer-Ursem Tamara; Rochet Jean-Christophe; Jayant Krishna; Khan Hammad F.; Scott Alicia N.; Aryal Uma K.; Kinzer-Ursem Tamara L. el at., Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex, , (2024)

PMID:

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.